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Abstract 
here has been extensive research in the field of Brain-Computer Interfaces (BCIs) and the field 
is continuously evolving in order to provide an easy to use interface for people with motor or 
other disabilities. The implementation of non-invasive BCIs using Electroencephalography 

(EEG) signals requires considerable signal processing to decode the brain signals as well as extensive 
training of the user. The Electromyography (EMG) signals produced from eye blinks, teeth clenching, 
etc are regarded as artifacts in EEG signals and are easy to generate and decode. This paper presents use 
of teeth clenching and eye blink ‘artifacts’ for an intuitive and easy to use control of a robotic arm in 
three dimensions to perform a pick and place task. Efficiency of the proposed technique is compared 
with a standard telemanipulation technique using a haptic device. Decision trees were used to adapt the 
technique for different operators. 

Keywords: Electromyography (EMG), Electroencephalography (EEG), Brain Computer Interface 
(BCI), Blink, Teeth Clench, Decision Tree. 
 

1. Introduction 
A Brain-Computer interface provides a direct pathway between brain and an external device. This 

is of great help for people with motor disabilities and allows them to control devices such as a 
prosthetic limb, a wheelchair or some other external device just by using their thoughts. The electrical 
activity of the brain can be conveniently captured non-invasively using an Electroencephalography 
(EEG) cap. The EEG cap has a number of electrodes placed over the scalp, over different brain regions. 
There have been various BCIs that use EEG signals as in [15], [11], [14], [12]. The EEG signals have poor 
spatial resolution, and each electrode captures a mix of neuronal activities from different brain regions. 
The BCIs using EEG signals thus need extensive signal processing so as to separate meaningful EEG 
signals from the mixture signals. Then the best features need to be extracted that correspond to 
different thoughts in the brain. Finally some classifier is trained using those features so as to predict in 
real-time the thought in the brain. None of the classifiers that have been used is able to accurately 
decode the brain signal with 100 percent accuracy, which is partly due to low SNR of EEG signals. The 
user needs to spend a good amount of time over training so that proper EEG signals could be generated 
in real-time for control of an external device.  
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Figure 1:  Experimental setup 

The electromyography (EMG) signals in the head are generated from various activities like teeth 
clenching, eye blinks, etc. These signals have higher SNR as compared to EEG signals and are captured 
by the EEG electrodes as EEG artifacts. These artifacts are easy to detect and require almost no training 
for their generation. These signals have been variously used for aiding a BCI or for some full-fledged 
control. The eye-blinks have been used for home automation [5] and a wheelchair control [1] and [9]. 
Teeth clenching has been used for indicating termination of a task in BCI-assistive drinking [10], for 
cursor control and mouse clicks [2], and for bi-directional robotic arm control [3]. Generally, the EEG 
artifacts have been used either as a switch or as a motion command with pre-fixed step sizes in a 
particular direction. This discrete nature of such mappings makes the control less-intuitive to use. 

 

Figure 2:  Electrode Montage for Enobio-32 
(Electrodes used in this work are shown in Red) 
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This paper suggests an intuitive way of using EEG artifacts for a robotic arm control in three dimensions 
to perform a pick and place task. Here, we map the teeth clenching intensity to the speed of the robot 
giving a sensation of continuous control of the robotic arm. Only three electrodes (other than ground 
and reference) were used for the detection of EEG artifacts. A decision-tree based training and 
classification method was used to adapt various parameters specific to an operator. As a safety add-
on, a force-control feature was added to avoid any collisions of the robot with the environment during 
motion. Section 2 of this paper describes the experimental setup used. Section 3 discusses the 
techniques used for mapping EEG artifacts for teleoperation of the robotic arm. Section 4 presents the 
experimental results obtained. The paper is finally concluded in Section 5. 

 
2. Experimental Setup 

The overall setup is shown in Figure 1. We have used Enobio-32 system from Neuroelectrics for the 
acquisition of EEG signals. It is a 32-electrode system with both dry as well as gel-based EEG Electrodes. 
Here, we have used the dry electrodes for teeth clenching and gel-based electrode for eye-blink signals 
(since eye-blink signals were captured at the forehead, where gel-based electrode was found to be 
more comfortable as compared to the dry one). The system has a sampling rate of 500 Hz. It can 
transfer the signals to a computer via Bluetooth. We have used three electrodes T7, T8 and Fp2 (shown 
in Red, Figure 2) to acquire the EEG data. Also the Driven Right Leg (DRL) and the Common Mode Sense 
(CMS) electrodes are put on the right earlobe for reference purpose. 

For telemanipulation, a KUKA KR-6 ARC robotic arm is used which is a 6-degrees of freedom 
industrial robot capable of performing pick and place operations in a 3-D world. The robot is fitted with 
a Schunk pneumatic two-finger gripper. An ATI 6-axis force/torque sensor is mounted on the robot 
wrist to measure the forces generated when the robot interacts with the environment. 

Four healthy male subjects (age between 25-35 years) were involved in the final experiments. 

 

3. Robot Telemanipulation with EEG Artifacts 
The Enobio-32 system records the EEG activity from the scalp. The EEG signals get mixed with the 

artifacts generated from various muscle activities like Eye-Blinking, Teeth-Clenching, etc. These 
artifacts are easy to generate deliberately with little training. These artifacts are generated due to the 
activity of Frontalis and Temporalis muscles as explained in [6]. The Eye-Blinks can be captured easily 
by one of the frontal electrodes. We chose Fp2 electrode for capturing the eye-blinks. The teeth 
clenching can be done either  

 
Figure 3:  Filtered eye-blinking signal before and after filtering (Electrode Fp2) 
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Table 1: Thresholds for blink detection 

Subject Threshold for  

Experiment 1 (nV) 

Threshold for  

Experiment 2 (nV) 

K 0.7*10^5 0.7*10^5 

A 0.7*10^5 0.7*10^5 

R 0.7*10^5 0.7*10^5 

D 0.6*10^5 0.7*10^5 
 

with left half or the right half of the jaw. The signals for left teeth clenching are captured using the 
electrode T7 and the signals for right teeth clenching are recorded using the electrode T8. The premolar 
and molar teeth were mainly used to generate the clenching signals. Following subsections discuss the 
processing of eye-blink and teeth clenching signals. 

3.1. Eye-Blink Signals 

In our setup, the eye-blink signals are recorded using electrode Fp2. The data is acquired every 1 
second. The signal is first filtered through a Butterworth band-pass filter with lower cut-off at 0.75 Hz 
and upper cut-off at 10 Hz. The output before and after filtering is shown in Figure 3 which shows a 
single blink as well as two consecutive blinks within a second. In the filtered data, first the peaks are 
detected. The peaks are defined as locations where sign of the slope changes from positive to negative. 
Thereafter, a peak is classified as a blink if the difference between its amplitude and the average signal 
amplitude is greater than a threshold. The threshold, which is subject specific was set for a particular 
user after analyzing training data recorded for him. The threshold values for the experiments carried 
out in this paper are reported in Table 1. 

We have used the double-blink as a switch for selection of an axis of motion for the robot. Using 
double-blink, the user can alternate between x, y and z axis of the robot motion as shown in Figure 4, 
e.g. if the user is moving the robot in x-axis, the user can select y-axis by performing a double-blink. 
The next double-blink will choose the z-axis for robot motion and so on cycling among the axis. 

 
Figure 4:  Robot axis selection using Double-Blink 

 

Figure 5:  Spectrograms for teeth clenching signals 
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Figure 6: Variation of Spectral Power with Intensity of Clenching 

 

3.2. Teeth Clenching Signals 

In our setup, the teeth clenching signals are recorded using electrodes T7 and T8. The left-side teeth 
clenching generates dominant signals in T7 whereas the right-side teeth clenching generates dominant 
signals in T8 as can be seen from the spectrogram of the recorded signals in Figure 5. From the 
observations, we chose the frequency range of 20-100Hz and found that the intensity of teeth 
clenching affects this frequency range proportionally i.e. the power of frequency components in the 
range of 20-100 Hz increased proportionally with the intensity of teeth clenching (observed 
qualitatively) which is also mentioned in [6] and can be seen in Figure 6 where we asked the subjects 
to perform left and right clenches of 4 varying intensities (the clench level 0 indicates rest or no clench, 
level 1 indicates a light clench and so on up to level 4 for the hardest or full clench, for a particular 
subject). The quantitative analysis of clenching force and the EMG signals is made in [4], which also 
suggests a linear relationship between the two.  

From this observation, we tried to map the intensity of clenching to the speed of the robot in a 
chosen axis as explained under. 

The signals were recorded from T7 and T8 for 1 second and the discrete fourier transform (DFT) of the 
signals was taken. The absolute values of DFT components in the range 20-48 Hz and 52-100 Hz were 
summed up (the range of 48-52 Hz is left out to avoid the line noise at 50 Hz) to get the intensity of 
clenching (𝐼𝐼). The range of values of 𝐼𝐼 is linearly mapped onto the robot speed. The clenching intensity 
for T7 (𝐼𝐼𝑇𝑇7) is used to control the robot’s speed in the negative direction of the axis selected and the 
clenching intensity for T8 (𝐼𝐼𝑇𝑇8) is used to control the robot’s speed in the positive direction of the 
selected axis. Thus, if the x-axis of the robot is selected (using double-blink as explained in the previous 
section), where the robot can be moved left or right, the user can clench left half of the teeth to move 
the robot in left and right half of the teeth to move the robot in right direction. Moreover, the intensity 
of clenching will decide the robot’s speed. This kind of speed mapping helps to efficiently  perform the 
pick and place operations since the robot needs to be moved longer distances when reaching an object 
from a far-off position but it needs to be moved slowly and accurately when grasping the object and 
placing it. This is quite possible with a speed mapping as done here.  
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The gripper is actuated when both 𝐼𝐼𝑇𝑇7 and 𝐼𝐼𝑇𝑇8 cross a threshold value i.e. when left as well as right 
teeth are clenched (full jaw teeth clenching). Such a clenching toggles the current state of the gripper 
i.e. if the gripper is open, full teeth clenching will close it and if the gripper is closed, full teeth clenching 
will open it. This 

 
Figure 7: Flowchart for Telemanipulation using EEG Artifacts 

methodology can be implemented as presented in Figure 7. From Figure 7, we can see that the 
actuation of the robot and the gripper depends upon various thresholds. We can also see from Figure 
6 that the intensities of clenching vary among different subjects and hence the thresholds would be 
different for different subjects. To compute these thresholds and automatically incorporate them in 
the robot control program, we used a decision tree based training and classification technique which 
is explained in the next subsection. 
 

3.3. Training and Classification 

      A decision tree was used to learn the different clenching thresholds and classify the clenching 
signals into rest (no-clench), left clench, right clench or a full clench. For training, a subject was shown 
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a screen where a command appeared as either rest or teeth clench (left, right, full or no-clench (rest)). 
The subjects were asked 

                                           Table 2: Classification accuracies for different subjects 

Subject Classification Accuracy (%) 

K 100 

A 92.5 

R 82.5 

D 100 

 

to perform the clenching with varying intensities. The rest command appeared for 1 second and after 
that the clench command appeared. The recording of clench signals starts after 0.5 second of clench 
command and lasted for 1 second. Hence, one recording was complete in 2.5 seconds. In this manner, 
total 20 recordings were taken for each type of clench command thereby making total 80 recordings. 
Hence, one training session lasted for 200 seconds or 3.3 minutes.  

      From these recordings, the clenching intensities 𝐼𝐼𝑇𝑇7 and 𝐼𝐼𝑇𝑇8 were computed as discussed in 3.2. It 
was found that the ratio of these intensities was helpful to classify full-clench. Hence the ratio was also 
used for the training purpose. The training data looked like ( 𝐼𝐼𝑇𝑇7, 𝐼𝐼𝑇𝑇8, 𝐼𝐼𝑇𝑇7

𝐼𝐼𝑇𝑇8
, label), where the label was 1 

(left clench), 2 (right clench), 3 (rest or no-clench) or 4 (full clench). This set of data for a particular 
subject was used to train a decision tree using Gini index for the splitting criterion [7]. This training was 
done for 7 subjects and a set of test data was used to measure the classification accuracy. For a training 
set of 80 recordings, another set of 40 recordings was recorded as the test data. The 4 subjects with 
classification accuracy>80% were involved in the final experiments. The classification accuracies for 
the 4 final subjects are shown in Table 2. The confusion matrices for the 4 subjects are shown in Figure 
8.  

 
Figure 8: Confusion matrices for different subjects 
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Figure 9: Decision tree for one of the subjects 

 
Figure 10: Final methodology for telemanipulation using EEG artifacts 
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The wrong classification of a rest into a clench is dangerous as it would lead to motion of the robot 
without the operator’s intention. We can see from Figure 8 that there are no such wrong classifications 
of rest into a clench. Also, the wrong classification of some input into a full clench can lead to opening 
or closing of the gripper while carrying some object. This may lead to falling of the object. To minimize 
this, we added logic such that any classification into full clench would lead to opening/closing of the 
gripper only if the two earlier classification states were rest (no-clench). This means that the robot is 
in rest since last two time instances. Hence this avoids opening/closing of the gripper during motion. 

     A decision tree for one of the 4 subjects is shown in Figure 9. We can see that the tree learns various 
thresholds for a particular subject and classifies the signals into left, right, full or no clench. For the 
speed-control of the robot, we need access to the thresholds. These thresholds were extracted from a 
decision tree as shown in Figure 9. The minimum value of 𝐼𝐼𝑇𝑇7 that qualified as left clench (label-1 in 
Figure 9) was taken as ThresholdT7 (Figure 7). Similarly, ThresholdT8 was extracted from the decision 
tree. The final methodology for control of the robotic arm using the decision tree is shown in Figure 
10. 

     A force control feature was added as a safety add-on to the robot as in [13] so that any accidental 
collision of the robot is avoided with objects in the environment. With the help of force/torque sensor 
mounted on the robot’s wrist, the force values were monitored continuously. If the force exceeds a 
threshold, the robot temporarily overrides the user’s program and recoils in the direction of the net 
force. This is quite useful for pick and place operations. 

 

4. Experiments 
Two different experiments for the robotic arm control were carried out with the 4 subjects as discussed 
in the next subsections. 
 

4.1 Graphical User Interface 

     A GUI (Figure 11) was provided to the operator for controlling the robotic arm. The GUI shows the 
currently selected axis, gripper status, net force observed at the robot’s end-effector and the clenching 
intensities for left and right teeth. The intensities are converted into motion command by multiplying 
them with a proportionality constant (after subtracting the thresholds as shown in Figure 10). These 
constant multipliers for left teeth and right teeth clenching can be adjusted using the GUI.  
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Figure 11: GUI for telemanipulation of the robotic arm 

 
Figure 12: Setup for Experiment 1 

For the experiments in this paper, we adjusted these constants such that the maximum speed of the 
robot remains around 40 mm/sec for both left as well as right teeth clenching. Since the robot takes a 
motion command every 12 ms cycle, 40 mm/sec speed corresponds to 0.5 mm per cycle. 
 

4.2 Experiment 1: Target reaching in respective axes 

     In the first experiment, the subjects were asked to move the robotic arm to the target positions in 
x, y and z-axis respectively. The target positions in each of the axis were marked by a dot surrounded 
by a circle of radius 10 mm. The robot’s end-effector was mounted with laser pointers. Hence, the aim 
was to move the robotic arm so as to position the laser pointer as near to the target dot as possible. 
The setup is shown in Figure 12.  
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Figure 13: Path traversed by the robotic arm during a trial of Experiment 1 

 

Table 3: Root Mean Squared error and average time taken for target reaching experiment (over 10 
trials for each subject) 

Subject R.M.S. Error in X 
(mm) 

R.M.S. Error in Y 
(mm) 

R.M.S. Error in Z 
(mm) 

Time taken (seconds) 

K 3.4 4.3 10.0 53 

A 4.0 5.6 13.4 105 

R 4.4 3.1 15.1 60 

D 5.4 7.4 30.2 50 

 

    This experiment was done to assess how accurately the robot can be moved in each of the axis so as 
to reach a particular target. This experiment also provided the operator training for the 
telemanipulation experiment described in the next subsection. The path traversed by the robotic arm 
during one of the trials of this experiment by one of the subjects is shown in Figure 13. We can see 
from Figure 13, how the operator uses speed control to reach a particular target.  

     This experiment was repeated 10 times by each of the subjects. The root mean squared errors (1) 
over the 10 trials for the respective axis and the average time taken by each of the subjects are shown 
in Table 3. We can see that the errors are near 10 mm (radius of the circle surrounding the target dot) 
except in z-axis for the subject D. 

                                                                 𝑅𝑅.𝑀𝑀. 𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �(∑ (𝑇𝑇𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 )/𝑛𝑛2                                                             (1) 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
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4.3 Experiment 2: Pick and place experiment 

     In the second experiment, the subjects were asked to operate the robotic arm so as to pick an object 
from one fixed location to a fixed target location. Hence, this operation included the gripper control 
also. The object to be picked was having a circular disc shaped base (with radius 65 mm) with a shaft 
at its center. The setup can be seen in Figure 14. 

     A circle of radius 80 mm was drawn at the target location. Hence, the aim was to place the object 
inside the target circle. This experiment was done to assess the performance of the techniques 
described in this paper for a pick and place task. We can see the path traversed by the robotic arm 
during one of the trials for this  

 

 
Figure 14: Setup for Experiment 2 

 

 
Figure 15: Path traversed by the robotic arm during a trial of Experiment 2 
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Table 4: Root Mean Squared error, average time taken and number of falls for pick and place experiment (over 
5 successful trials for each subject) 

Subject R.M.S. Error 
(mm) 

(Using EEG 
Artifacts) 

Time Taken 
(seconds) 

(Using EEG 
Artifacts) 

Falls/Total no. 
of Trials 

(Using EEG 
Artifacts) 

R.M.S. 
Error (mm) 

(Using 
Haptic 
Device) 

Time Taken 
(seconds) 

(Using 
Haptic 
Device) 

Accuracy 
Index 

Speed 
Index 

K 15.4 128 0/5 4.3 92 0.3 0.7 

A 16.9 201 1/6 5.3 106 0.3 0.5 

R 18.4 159 2/7 4.9 117 0.3 0.7 

D 16.2 156 1/6 5.5 79 0.3 0.5 

 

     experiment in Figure 15 (a) where the robot can move only in a single axis at a time. This experiment 
was repeated 5 times by each of the subjects. Table 4 shows the root mean squared errors (for the 
target position in all the three axes together) over the 5 successful trials and the average time taken 
by each of the subjects. There were falls of the object during some of the trials as discussed in section 
3.3. The experiments were repeated by a subject till total 5 trials without any fall were obtained. The 
numbers of total trials to get 5 successful trials without any fall, for the 4 subjects, are also reported in 
Table 4.  

     The same experiments were repeated using a haptic device and a motion mapping called joystick 
control as discussed in [8]. In the motion mapping described in this paper, the robot’s speed is 
proportional to the clenching intensity and the robot keeps moving till the teeth are clenched, similarly 
in the joystick control, the robot’s speed is proportional to the current position of haptic device from 
a pre-specified origin and the robot keeps moving till the haptic device’s button is kept pressed. We 
can see the path traversed by the robotic arm during one of the trials for this experiment in Figure 15 
(b) where the robot can move in all the axes simultaneously. To have a fair comparison, we kept the 
40 mm/sec or 0.5 mm per cycle bound on the speed for the experiments with the haptic device also 
as discussed in section 4.1. The root mean squared errors over the 5 trials and the average time taken 
by each of the subjects for the experiments with the haptic device are reported in Table 4. There were 
no falls of the object (as a separate button was provided on the haptic device, for opening and closing 
of the gripper); hence the falls are not reported for these experiments. 

     We can see from Table 4 that the error is lesser with the haptic device, but the error with EEG 
artifacts is near 15 mm (radius of the circle in which the object was to be placed). The error in both 
experiment 1 and 2 is near radius of the reference circle because the subjects were instructed to reach 
within the circle and not exactly at its center. 

      Also, the time taken for the experiments using haptic device is lesser than the time taken for the 
experiments using EEG artifacts. This is obvious as the robot can be moved in all the axes 
simultaneously using the haptic device, whereas, using the EEG artifacts, the robot can be moved only 
in a single axis at a time. To quantitatively compare our technique with the haptic device’s 
performance, we define two metrics viz. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 & 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (2, 3): 

 

                                                      𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑅𝑅.𝑀𝑀.𝑆𝑆.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑅𝑅.𝑀𝑀.𝑆𝑆.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

                                                        (2) 

 

                                                      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐸𝐸𝐸𝐸𝐸𝐸 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

                                                              (3) 

Kamal Sharma et al. / Vol. 7(26), Oct. 2017, PP. 3595-3609                                        

http://www.aeuso.org/


 

 
3608 

 
International Journal of Mechatronics, Electrical and Computer Technology (IJMEC) 

Universal Scientific Organization, www.aeuso.org 
PISSN: 2411-6173, EISSN: 2305-0543 

 

     The indices defined above compare the performance of telemanipulation using EEG artifacts with 
respect to the telemanipulation using a haptic device in terms of accuracy achieved and the time spent. 
We can see from Table 4 that the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 for all the four subjects is 0.3 and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
is 0.5-0.7. Thus the telemanipulation technique described here reaches around 30% accuracy with 50-
70% speed as compared to the haptic device. 

 

Conclusion 
     This paper presented the utilization of EEG artifacts such as blinks and teeth clenching for 
telemanipulation of a robotic arm. The generation of these artifacts requires a small training time. The 
mapping of clenching intensity to the robot’s speed provides an intuitive and easy to use interface for 
pick and place tasks.  

     Since clenching intensities were different for different subjects, a decision tree based learning 
technique was used to classify different types of clenching and to compute the user-dependent 
clenching thresholds. The subjects were able to perform telemanipulation after a small training time 
of 3.3 minutes. A retraining was required once the cap was removed and worn again. The efficacy of 
proposed technique was compared to the telemanipulation using a haptic device in terms of the 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼. Any telemanipulation technique should aim at increasing 
these two indices.  
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